Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer.

نویسندگان

  • W L Vaz
  • E C Melo
  • T E Thompson
چکیده

The two-dimensional connectivity is examined for mixed bilayers of dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) as a function of composition and temperature at constant pressure using the fluorescence recovery after photobleaching (FRAP) method. These phospholipid mixtures exhibit peritectic behavior with a large region in which both gel and liquid crystalline phases coexist. Dilauroyl phosphatidylethanolamine covalently linked through the amino function in its head group to the fluorescent nitrobenzodiazolyl group (NBD-DLPE) was used as the fluorescent probe in this study, because it was found to partition almost exclusively in the liquid crystalline phase. The results of these studies show the line of connectivity to be close to the liquidus line on the phase diagram over a rather broad range of concentrations. In this range, a gel phase comprising approximately 20% of the system disconnects a liquid crystalline phase comprising 80% of the system. The implications of this result are discussed for domain shape and the organization of biological membrane components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluid phase connectivity in an isomorphous, two-component, two-phase phosphatidylcholine bilayer.

Two-dimensional fluid phase connectivity is examined in mixed bilayers of dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine as a function of composition and temperature at constant pressure using fluorescence recovery after photobleaching (FRAP). These isomorphous phospholipid mixtures exhibit nearly ideal mixing behavior. Dilauroyl phosphatidylethanolamine covalently linked t...

متن کامل

Numerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells

A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...

متن کامل

Cholesterol-induced fluid-phase immiscibility in membranes.

The fluid-phase behavior of binary mixtures of cholesterol with phosphatidylcholines is investigated using magnetic resonance methods. Phospholipid biradicals provide the electron spin resonance spectroscopic resolution of two immiscible fluid phases in the dipalmitoylphosphatidylcholine-cholesterol system. Isotropic chemical shifts of the phospholipid carbonyl carbons in binary mixtures with c...

متن کامل

Slaved diffusion in phospholipid bilayers.

The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked l...

متن کامل

Size dependence of the translational diffusion of large integral membrane proteins in liquid-crystalline phase lipid bilayers. A study using fluorescence recovery after photobleaching.

The translational diffusion of bovine rhodopsin, the Ca2+-activated adenosinetriphosphatase of rabbit muscle sarcoplasmic reticulum, and the acetylcholine receptor monomer of Torpedo marmorata has been examined at a high dilution (molar ratios of lipid/protein greater than or equal to 3000/1) in liquid-crystalline phase phospholipid bilayer membranes by using the fluorescence recovery after pho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 56 5  شماره 

صفحات  -

تاریخ انتشار 1989